Multiple Sparse Representations Classification
نویسندگان
چکیده
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملDetection of Multiple Sclerosis Lesions using Sparse Representations and Dictionary Learning
The manual delineation of Multiple Sclerosis (MS) lesions is a challenging task pertaining to the requirement of neurological experts and high intraand inter-observer variability. It is also time consuming because large number of Magnetic Resonance (MR) image slices are needed to obtain 3-D information. Over the last years, various models combined with supervised and unsupervised classification...
متن کاملSparse Representations and Dictionary Learning Based Longitudinal Segmentation of Multiple Sclerosis Lesions
Sparse representations allow modeling data using a few basis elements of an over-complete dictionary and have been used in many image processing applications. We propose to use the sparse representation and dictionary learning paradigm to automatically segment Multiple Sclerosis (MS) lesions from longitudinal MR data. The dictionaries are learned for the lesion and healthy brain tissue classes,...
متن کاملDeep Self-taught Learning for Remote Sensing Image Classification
This paper addresses the land cover classification task for remote sensing images by deep self-taught learning. Our selftaught learning approach learns suitable feature representations of the input data using sparse representation and undercomplete dictionary learning. We propose a deep learning framework which extracts representations in multiple layers and use the output of the deepest layer ...
متن کاملDiscriminative models for robust image classification
A variety of real-world tasks involve the classification of images into pre-determined categories. Designing image classification algorithms that exhibit robustness to acquisition noise and image distortions, particularly when the available training data are insufficient to learn accurate models, is a significant challenge. This dissertation explores the development of discriminative models for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015